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Abstract

M.C. Escher’s lithograph, Planaria, embodies mathematical ideas that have inspired me to design building kits that  
can be used to make structures of octahedra and tetrahedra on a human-size scale. The geometric foundations are  
outlined and a series of designs are shown that culminate in large constructions made of laser-cut plywood.

Introduction

It is a beautiful fact that regular octahedra and tetrahedra can pack together to fill all space without gaps 
or overlaps. They can also be assembled as building blocks to make a fascinating variety of geometric 
structures.  The Dutch graphic artist M.C. Escher (1898-1972) was well aware of these mathematical  
possibilities and used them masterfully in his 1959 lithograph  Planaria (Flatworms), shown as Fig. 1. 
While many of Escher’s other artworks involve optical illusions, nonlinear transformations, or tricks of 
perspective, Planaria is a direct rendering of a possible physical structure, though one based on relatively 
unfamiliar geometric principles and relationships.  

Figure 1: Planaria, M.C. Escher, 1959



I  have long been fascinated by this image  and its  rich mathematical  foundations,  especially the five 
different  parallel columns that  penetrate the space.  How might  one physically replicate the portrayed  
structure? What Escher is  showing initially seems otherworldly to  viewers who have grown up in  a  
culture of rectangle-based architecture.  Yet it would be literally child’s-play—simply stacking blocks 
together—for anyone who might grow up in a world of octahedral and tetrahedral children’s blocks. 

Escher clearly had a thorough mastery of the underlying geometric principles in order to create such a  
rich architectural world.  His understanding is also clear in his own written description of the image [2]:

it is possible to build columns and pillars by piling up tetrahedra and octahedra in such a way that, when 
viewed as a whole, they do in fact stand vertically.  Five of these pillars are shown in the print.  The two that  
stand in the right-hand half of the print are in a sense the reverse of each other.  The further to the right of  
these shows only octahedra, but there must be invisible tetrahedra inside, whereas the pillar to the left of this 
appears to be built entirely of tetrahedra, yet there must be an internal vertical series of octahedra one on top 
of the other like beads strung on a necklace.

Escher picked up some geometric ideas from images in books he received from his half-brother, Berend, 
a mineralogist. His sketch books sometimes show a copy of a textbook geometric image before he made  
his  own  variations  [5],  but  I’ve  not  seen  sketches  for  Planaria.  How  did  Escher  obtain  his  rich 
understanding of the possible combinations of octahedra and tetrahedra? There are photos of Escher using 
cardboard and other materials in making physical models as preparation for other examples of his graphic  
work, but  again I’ve not  seen such for  Planaria.  As a sculptor with some sense of the complexities 
involved, I was certain that Escher must have used physical octahedra and tetrahedra to build his own 
understanding. So I was not surprised to learn via an email from J.A.F. de Rijk, who knew Escher and 
wrote (under the pseudonym Bruno Ernst) several books about his work, that in preparation for Planaria, 
“Escher used little forms from clay to make these buildings. And from these buildings he made drawings  
for his print.” So for me to build a deeper tactile understanding, I wanted a kit for creating structures from 
octahedra  and tetrahedra.  Moreover,  I  wanted a  kit  that  is  suitable  for  use  when giving a  hands-on 
workshop with students and others.  An ideal kit would allow open-ended play with these shapes, but 
what should that entail, exactly?  There are several options for how we might allow the components to  
interconnect.

Geometric Understanding

There are two natural approaches to explain the octahedron/tetrahedron structure: start with a rhombo -
hedron or start by packing spheres [1]. Six congruent rhombi can be joined to make the rhombohedron of  
Fig 2.  If we choose a rhombus in which the acute angles are 60 degrees, then we can imagine adding the 
six short diagonals that bisect each rhombus into two equilateral triangles. And then it is easy to see that 
the rhombohedron is dissected into a regular octahedron and two regular tetrahedra. Next, think of the  
rhombohedron as a skewed cube, and just as cubes pack all space, it is easy to see how the rhombohedron  
packs all space without gaps or overlaps.  And via the dissection, this implies that regular octahedra and 
tetrahedra  pack  all  space.  A careful  examination  of  this  construction  shows that  each  octahedron is 
surrounded by eight tetrahedra and each tetrahedron is surrounded by four octahedra. 

To summarize the above construction: each block joins face-to-face with blocks of the other type. This 
structure is sometimes abbreviated as the “oct-tet” packing. Another way to understand it starts with piles  
of cannonballs or spherical fruit. Fig. 3 shows a square pyramid of balls, starting with a square array as  
the bottom layer  and adding successive square  layers,  each one size smaller  and offset  to sit  in  the  
hollows of the layer below.  Each ball is tangent to twelve others: four below it (on which it sits), four in  
its layer, and four above it. If we construct line segments that connect the center of each ball to the centers  
of the twelve adjacent balls, the segments outline tetrahedra and octahedra. A close examination reveals  
that this process creates the same oct-tet structure and it can be extended to fill all space.  



Figure 2: Rhombohedron =
1 octahedron + 2 tetrahedra.

Figure 3: Balls stacked with 
square base.

Figure 4: Balls stacked with 
triangular base.

The oct-tet structure can also be generated from a triangular pyramid of balls, as in Fig. 4.  The easiest  
way to see this is to imagine taking the square pyramid, picking it up, rotating it, and putting it down so  
any of its four triangular faces is on the bottom. Now each horizontal layer is a triangular array of balls. 
The twelve neighbors can be accounted for as three in the layer below (on which it sits), six in its layer,  
and three in the layer above. It is a good exercise to look at  Planaria and find both types of pyramid. 
(When making the triangular pyramid, there is no ambiguity about where to place each ball, because the 
pyramid edges serve as guides.  But if one has unbounded planes of triangularly arranged balls, one must  
be sure to have each ball directly over a ball in the layer three below it.  If instead each ball is over a ball 
two layers below it, a different structure results, called the “hexagonal close packing”.)

Because the oct-tet structure is highly triangulated, it has great strength, so architects and engineers find it  
useful for spanning wide areas.  Buckminster Fuller popularized this usage and coined the name “octet 
truss” for it. Look upward next time you are in a mall or other large open indoor area and you are likely to  
find the oct-tet structure supporting the ceiling. There are two natural orientations for this structure, which 
correspond to the square-based and triangle-based pyramidal ball packings. In the first case, a four-fold 
rotation axis is vertical, while in the latter case a three-fold rotational axis is vertical.  

Magnetic Blocks

One direction that I explored is to make 6 cm magnetic octahedra and tetrahedra blocks with a rapid  
prototyping machine.  I made two versions on this idea, shown in Figures 5 and 6. In the first version,  
there are three small magnets in each face.  Magnetic North is facing outwards in the octahedra, while  
South faces  out  in  the  tetrahedra.  (Or  maybe  it  is  the  reverse  of  that.)  This  naturally leads  users  to 
maintain the constraint that each type of block is surrounded by the other.  Having three small magnets  
provides rotational alignment, i.e., the mating triangles of adjacent blocks remain parallel. 

In a second magnetic block design, I placed a spherical magnet in the center of each face.  These are 
confined to a small space in which they are free to rotate. In this design, any block will stick to any other  
block, since the magnets automatically rotate so North faces South.  This allows a wide range of irregular  
constructions, many of which do not fill space.  For example, one can try to put five tetrahedra together  
around an edge and discover that they almost close. There is a small gap because the dihedral angle of the  
tetrahedron is slightly less than 2π/5.  And similarly, twenty regular tetrahedra can be placed around a 
point, but there is still some remaining space, so they do not form an icosahedron.  See Fig. 7. Having one 
magnet per face instead of three allows free rotation about the face centers, which has pros and cons.  It  
opens up a larger space of possible structures, but one must align blocks to make oct-tet structure. Fig. 8 
shows a part of the tower one-from-the-right in Planaria. (It is a stack of stella octangulas.)



Figure 5: Blocks with 3 magnets per face. Figure 6: Blocks with 1 spherical magnet per face.

Figure 7: Not an icosahedron Figure 8: Tower from Planaria

So far, I have only made these blocks in small quantities on a rapid prototyping machine.  I dye the nylon 
blue and yellow, then the magnetic spheres are inserted, and a clear cover is glued over each face to retain  
the magnet but allow rotation.  I would love to have enough to make larger constructions, but they are  
expensive to produce in this manner.  So I have also explored other ideas.

Experimental Prototypes of Node and Strut Systems

Instead of making octahedra and tetrahedra as the fundamental building blocks, another strategy is to  
make nodes and struts that serve as the vertices and edges of the structure.  Each node needs twelve  
connection points in the directions corresponding to twelve adjacent cannonballs. With a bit of sketching, 
you should convince yourself that these turn out to be the twelve directions from the center of a cube to  
its twelve edge midpoints.  Zometool green struts [3] or the Synestructics purple struts [4] also point in  
these directions, so can also make these same structures, but on a much smaller scale than I wanted.

There  are  many  ways  to  construct  a  connector  with  receptacles  or  prongs  pointing  in  these  twelve  
directions and I have experimented with a series of node and strut systems.  I am interested in kits with 
large struts, which can be used by groups of people to make structures on a human scale.  In very large  
quantities, injection molded plastic would be an option, but that is not cost effective in small quantities.  
So I have explored ways to construct kits from easily available materials. The following designs were  
instructive, but all failed for one reason or another:



A. The nodes are cubes of wood.  A pair of holes is drilled in each edge.  The struts are pairs of dowels  
spaced to match the holes.  The advantages of this system are that wood cubes are relatively inexpensive 
mass-produced  parts,  holes  are  easy  to  drill,  and  the  pairs  of  dowels  provide  rotational  alignment. 
However, prototyping showed that at the desired scale, the wood cubes are too heavy.

B. The nodes are cubes of high-density foam with one hole in each edge and the struts are dowels covered 
in a foam sleeve (commercially made for swimming). See Fig. 9. A notch in the end of the sleeve mates  
to the angle of the cube to provide rotational alignment. This solves the node weight problem, but the 
foams I tried were either not rigid enough or not resilient enough. The holes would stretch permanently.

C. The nodes are foam cubes with North magnets at the edge midpoints. The struts are dowels with South 
magnets  at  their  ends.  See  Fig.  10.  After  experimenting,  shattering  some  neodymium magnets,  and 
eventually finding magnets that do not shatter, this design turned out to be too expensive to pursue.

D. The nodes are made of twelve pieces of dowel mitered to join together and the struts are hollow foam 
tubes.  See Fig. 11. This worked, as the tetrahedron in Fig. 12 shows. But these prototypes were time 
consuming to make, so I had a plastics fabricator cast one of the wood nodes so it could be replicated in 
plastic. A variety of plastics were tried, but the nodes were always too heavy for the struts to support.  In  
addition, we were concerned that the mace-like appearance of a node in a strut might invite misbehavior.

Figure 9: Foam nodes; dowels for struts. Figure 10: Magnets in nodes and struts.

Figure 11: Wood dowel nodes; foam struts. Figure 12: A tetrahedron



Large Laser-Cut Wood System

After the above experiments, and after the purchase of a laser-cutter for use in prototyping, I developed a  
series of designs in which the nodes and struts are made of laser-cut 6 mm thick plywood. As Fig. 13  
shows, the construction allows large models, for human-scale constructions, which I like because building 
anything big is memorable. But large kits are problematic because if a structure looks strong enough to  
climb on, children will attempt to do so.  Then parts will break if they are too weak or the climber may 
fall off if the structure holds. The approach taken here is to make parts that are clearly too thin to support  
climbing. Another issue is that long struts can act as lever arms, placing large torques on the nodes, which 
is mitigated here with multi-piece nodes that pop apart when overstressed.

Figure 13: Construction with laser-cut wood nodes and struts.

To keep the nodes parallel, the struts should connect in a way that prevents them from rotating. This is  
easy to arrange with struts cut from flat stock.  But using 2D stock to make 3D nodes to which the struts 
connect and point in the correct directions is trickier. Recall from Figs. 9-10 that the struts must connect  
in the twelve directions that correspond to the midpoints of the edges of a cube.  Given that a laser-cutter 
produces flat pieces, it is natural to think of assembling the nodes using some sort of polyhedral design.  
Four possible ways to do this are shown in Figures 14-17.  In each case, the same twelve spatial directions 
are produced. One idea is to build a node that is essentially a cube with connection joints at its edge  
midpoints. This is feasible with six flat components used as faces of the cube, mimicking design (A)  
above but lighter in weight. Another family of designs is based on a rhombic dodecahedron, which has  
twelve face planes orthogonal to the desired directions, so a receptacle in the center of each face could  
receive a strut. It is also possible to design a node using a cuboctahedron, as its twelve vertices point in  
the desired directions. This is intriguing also because the edges of a cuboctahedron outline four hexagons,  
so one can imagine building it from four interlocking laser-cut components.



Figure 14: Possible 
cube node.

Figure 15: Possible  
rhombic dodecahedron 

node.

Figure 16: Possible  
cuboctahedron node.

Figure 17: Possible  
octahedron node.

However, the design I ended up producing is based on an octahedron.  The octahedron’s edge midpoints 
are equivalent to the cube’s edge midpoints, because a cube and an octahedron are mutually dual and can 
be  positioned  so  their  edges  bisect  each  other.  Rather  than  making  the  eight  triangular  faces  of  an 
octahedron as in Fig. 17, I made a spherical model of the edges. After a number of iterations, I worked  
out a design with six D-shaped pieces that snap together to make the 12 cm spherical node shown in  
Fig. 18.  The part  shape,  shown in Fig.  19,  has  two tabs  that  lock into holes  in  another  piece.  It  is  
something of a puzzle to assemble the nodes, but once built, they hold together without glue, or can be  
glued for a more solid feel. But an advantage to not gluing them is that they can then pop apart if under  
extreme stress, rather than breaking the wood. Several cutouts in the parts keep the weight down and also 
make the nodes visually light and interesting. They are simple, strong, relatively inexpensive, and the 
most elegant oct-tet design I have made yet, so I had an industrial laser-cutting firm produce 300 nodes 
and 700 struts.  

One issue to be aware of with this design is that the struts do not support any tension.  They slide off a  
node as easily as they slide on.  It is hard to laser-cut plywood parts for a good friction fit, because it  
would require stock of a very consistent thickness, which is not feasible as the wood is sanded after laser-
cutting to remove smoke marks.  Instead, I designed each strut with a small hole near each end and a  
twist-tie  is  placed through the hole  to  tie  the  strut  to  its  node.   This  is  usually only needed on the  
horizontal struts, as the vertical struts are generally under compression.

Figure 18: Laser-cut nodes and strut. Figure 19: Template



Figure 20: Workshop participants exploring. Figure 21: A tower from Planaria.

In January, 2012, I ran a workshop at Math for America in Manhattan where teachers and students first 
beta-tested these units with me. Figs. 13 and 20-21 show some constructions with this kit, including one 
of the towers from Escher’s Planaria. Additional photos can be seen online at georgehart.com

Conclusion

Among the many works of M.C. Escher that have provided mathematical inspiration to his fans, Planaria 
stands out to me for inviting large-scale physical constructions. The assembly of octahedra and tetrahedra  
into architectural structures is made natural when using kits designed with the appropriate angles and 
connectors.  Small magnetic building blocks provide one level of understanding, while a large node-and-
strut kit allows an immersive human-scale experience. After a long prototyping phase, I have worked out  
a design with laser-cut plywood components suitable for group workshops.  Initial  testing shows that 
human-scale construction results in great student impact. Through future workshops, I hope more people 
will be able to appreciate Escher’s wonderful structural visions.
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